17-β-estradiol inhibits hyperosmolarity-induced proinflammatory cytokine elevation via the p38 MAPK pathway in human corneal epithelial cells
نویسندگان
چکیده
PURPOSE To evaluate the effects of 17-β-estradiol on hyperosmolar stress-induced proinflammatory cytokine production of interleukin (IL)-6, IL-1, and tumor necrosis factor-alpha (TNF-α) in SV40-immortalized human corneal epithelial cells (hCECs) and the regulatory effects of the mitogen-activated protein kinase (MAPK) signaling pathways in this process. METHODS SV40 hCECs cultured in normal osmolar media were switched to a higher osmolarity (450 mOsM) by adding NaCl with or without pretreatment with 17-β-estradiol. Real-time polymerase chain reaction and ELISA were applied to characterize IL-6, IL-1, and TNF-α gene and protein expression. Cells were treated for 15-60 min, lysed in radioimmunoprecipitation assay (RIPA) buffer and subjected to a western blot with phospho (p)-specific antibodies against extracellular signal-regulated protein kinase 1/2 (ERK1/2), P38 kinase, and c-Jun N-terminal kinase 1/2 (JNK1/2). RESULTS The expression and production of IL-6, IL-1, and TNF-α in SV40 hCECs increased when the media osmolarity was switched to 450 mOsM. Pretreatment with 10(-10) M 17-β-estradiol greatly inhibited the increased expression and production of IL-6, IL-1, and TNF-α induced by hyperosmolarity, whereas with the administration of SB203580 (10 μM), an inhibitor of the p38 pathway, the inhibiting effect of 17-β-estradiol disappeared. The western blot results showed that the increased phosphorylation level of p38 caused by hyperosmolarity was greatly inhibited by 17-β-estradiol. CONCLUSIONS 17-β-estradiol greatly inhibited the expression and production of proinflammatory cytokines IL-6, IL-1, and TNF-α, which were stimulated by hyperosmolarity in SV40-immortalized hCECs. The results also suggested that the p38 MAPK signaling pathway was involved in the regulatory effects of estrogen on hCECs. These findings may contribute to an understanding of the etiologic roles and therapeutic implications of the hormone estrogen in dry eye disease.
منابع مشابه
Genistein Induces Apoptosis and Inhibits Proliferation of HT29 Colon Cancer Cells
Soybean isoflavone genistein has multiple anticancer properties and its pro-apoptotic and anti-proliferative effects have been studied in different cancer cells. However, the mechanisms of action of genistein and its molecular targets on human colon cells have not been fully elucidated. Therefore, caspase-3 and p38 mitogen-activated protein kinase (p38 MAPK) as the main therapeutic targets...
متن کاملCarbon monoxide inhibits IL-17-induced IL-6 production through the MAPK pathway in human pulmonary epithelial cells.
Interleukin (IL)-17 is a proinflammatory cytokine that is produced by activated memory CD4 T cells, which regulates pulmonary neutrophil emigration by the induction of CXC chemokines and cytokines. IL-17 constitutes a potential target for pharmacotherapy against exaggerated neutrophil recruitment in airway diseases. As a cytoprotective and anti-inflammatory gaseous molecule, carbon monoxide (CO...
متن کاملGambogic acid inhibits LPS-induced macrophage pro-inflammatory cytokine production mainly through suppression of the p38 pathway
Objective(s): In traditional Chinese medicine, gamboge can detoxify bodies, kill parasites, and act as a hemostatic agent. Recent studies have demonstrated that gambogic acid (GBA) suppressed inflammation in arthritis, and also presented antitumor effect. Thus, this study investigated the new biological properties of GBA on macrophages.Materials and Methods: RAW 264.7 cells were pretreated with...
متن کاملTanshinone IIA inhibits AGEs-induced proliferation and migration of cultured vascular smooth muscle cells by suppressing ERK1/2 MAPK signaling
Objective(s): Vascular smooth muscle cells (VSMCs) play a key role in the pathogenesis of diabetic vascular disease. Our current study sought to explore the effects of tanshinone IIA on the proliferation and migration of VSMCs induced by advanced glycation end products (AGEs). Materials and Methods: In this study, we examined the effects of tanshinone IIA by cell proliferation assay and cell mi...
متن کاملMapracorat, a novel selective glucocorticoid receptor agonist, inhibits hyperosmolar-induced cytokine release and MAPK pathways in human corneal epithelial cells
PURPOSE Increasing evidence suggests that tear hyperosmolarity is a central mechanism causing ocular surface inflammation and damage in dry eye disease. Mapracorat (BOL-303242-X) is a novel glucocorticoid receptor agonist currently under clinical evaluation for use in the treatment of dry eye disease. This study assessed the anti-inflammatory effects of mapracorat in an in vitro osmotic stress ...
متن کامل